Molecular Profiling Research Center for Drug Discovery (molprof), AIST

RNA Structural Workflow

User Manual

AIST 2019/02/18

Copyright (c) Molecular Profiling Research Center for Drug Discovery, AIST 2018 All Rights Reserved

Contents

1	Inti	roduction3
2	Abc	out the workflow of RNA related analysis4
3	Con	nmon rules5
4	Usa	ge of RNA Structural Prediction9
	4.1	Preparation
	4.2	Node9
	4.2.1	Node list10
	4.2.2	Node setting14
	4.2.2.1	SetVariable14
	4.2.2.2	2 Case Switch Variable15
	4.2.2.3	B FastaFileReader15
	4.2.2.4	CentroidFold_AIST16
	4.2.2.5	5 IPknot_AIST17
	4.2.2.6	8 RNA2Dchecker_AIST18
	4.2.2.7	7 RASSIE_AIST19
	4.2.2.8	B Rascal_AIST20
	4.2.2.9	P RactIP_AIST
	4.2.2.1	0 fpocket2_AIST
	4.2.2.1	1 PocketSelector
	4.2.2.1	2 FragmentSelector
	4.2.2.1	3 AutoDockVina_AIST
	4.2.2.1	4 DockingAnalyzer_AIST27
	4.2.2.1	5 Rebuild_AIST
	4.2.2.1	.6 MinMM_AIST
5	Exa	mples for Execution and Result Viewing
	5.1	Prediction of Tertiary Structures
	5.1.1	$\label{eq:prediction} Prediction of Tertiary \ Structures \ using \ the \ ReadFastaReader \ node \ \ 30$
	5.1.2	Prediction of Tertiary Structures using the Sparql_AIST node35
	5.2	Prediction of RNA-RNA interactions
	5.3	Prediction of Protein-RNA interactions
6	SPA	ARQL node
	6.1	Sparql related node
	6.1.1	Node list
	6.1.2	Sparql_AIST51
	6.1.2.1	Setting execution environment

	6.1.3 Sparql_AIST_Adv	52
	6.1.3.1 Setting execution environment	52
	6.1.4 SequenceSelector	54
	6.1.4.1 Result	54
	6.1.5 HtmlView	55
	6.1.5.1 Result	55
7	Appendix	55
	7.1 Appendix A: LSDBCrossSearch	56
8	Contact	58
9	Terms and Conditions of License for Use	58

1 Introduction

This manual describes the KNIME workflow of RNA structural analysis, which was developed at the Molecular Profiling Research Center for Drug Discovery (molprof), Advanced Industrial Science and Technology (AIST), Tokyo, JAPAN.

For installation of the workflow combination type, please refer to the installation manual available at the Life Science Database Integration website.

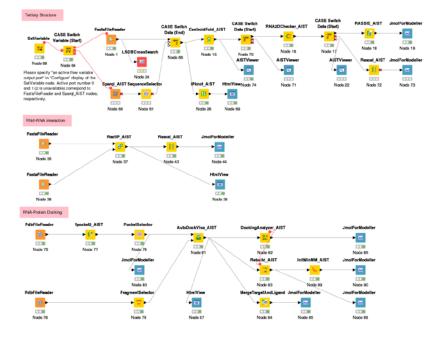
The Active workflows run on the KNIME platform. Please refer to the KNIME site for details about KNIME. This manual explains how the user can use the workflows of RNA structural analysis.

KNIME: http://www.knime.org/

2 About the workflow of RNA related analysis

No.	Active workflow	Operating	Explanation
	combination type name	system	
1	RNA Tertiary Structure	Windows 62 bit	Workflow that predicts
	Workflow	Linux 64 bit	the 3D structure of RNA
		MacOS	molecules
2	RNA-RNA Interaction	Windows 62 bit	Workflow that predicts
	Workflow	Linux 64 bit	the 3D structure of
		MacOS	RNA-RNA interactions
3	RNA -Protein Interaction	Windows 62 bit	Workflow that predicts
	Workflow	Linux 64 bit	the 3D structure of
		MacOS	RNA-protein interactions

2-1 Active workflow combination type list


3 Common rules

Common rules in all Active workflows are as follows.

1. Starting Active workflow

Users can download the KNIME package for the RNA structure prediction workflow from the website

(http://togo.medals.jp/active_local_rna_prediction.eng.html). The workflow is then shown and ready to use.

3-1 Starting the RNA_Structure_Prediction Active workflow

2. Node

A node is an icon that is shown in a workflow screen as follows;

File	Reader

3-2 FASTA File Reader Node (as an example)

When a node is selected, the explanation of each node is displayed in the "Node Description" column on the right of the KNIME screen.

3. Node progress

Signals below a node indicate the progress status, as shown below.

signal color	color	Progress message		
e	Red	Preparing for execution		
	Yellow	Stand-by		
Green		Complete		
	Thick	In progress		
	blue			
queued	queued	Queued		

3-3 Signal of node progress list

4. Node menu

A node menu is shown when right-clicking on a node, as shown below.

ø	Configure
\bigcirc	Execute
Ð	Execute and Open Views
	Cancel
×	Reset
﹐₹	Edit Node Name and Description
0	New Workflow Annotation
Q	View: name of first view
ot	Cut
Ð	Сору
Ē	Paste
\checkmark	Undo
$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Redo
×	Delete

3-4-Node menu

Menu command	Action	Note
Configure	Various settings of a node.	Another window is
		started.
Execute	Execute the node.	The node cannot be
		used unless the node
		status is yellow.
Execute and Open Views	This is an active display for	The node cannot be
	the node that displays the	used unless the node
	result window.	status is yellow.
	Execute a node.	
Cancel	Cancel the execution.	The node cannot be
		used unless the node
		status is deep blue.
Reset	The setting is reset.	The node is active if
		the node status is
		green.
Edit Node Name and	Use to change the node name	Another window is
Description	or description.	started.
New Workflow Annotation	Use to insert some comment.	The comment column
		is displayed.
View : [viewer name]	Use to display results.	Another window is
		started.
Cut	The node and the comment,	_
	etc. are cut.	
Сору	The node and the comment,	_
	etc. are copied.	
Paste	The node and the comment,	_
	etc., which are copied, are	
	pasted.	
Undo	Use to undo cut, copy or	_
	paste.	
Redo	Use to cancel the action	_
	undone.	
Delete	The node and the comment,	-
	etc. are deleted.	

3-4-2 Node menu list

5. Execute all executable nodes

All the nodes can be executed simultaneously when all configurations of the nodes are complete.

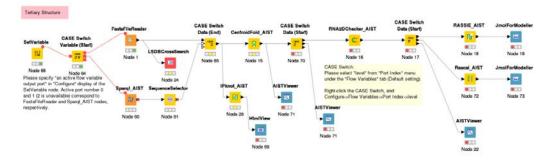
In that case, click on the icon at the top of the KNIME screen (shown below) after selecting the node, which is a starting point. (Execute all executable nodes (Shift+F7).)

3-5 Execute all executable nodes

 \odot

6. Alert messages and error messages

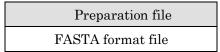
If an alert or an error occur after a node is executed, a pop-up screen will appear along with messages in the Console on the KNIME screen. Those should be checked to resolve problems.

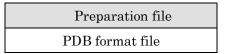

Examples of messages and measures include:

No	Messages	Cause and measures
1	Console:	Cause:
	WARN FastaFileReader 0:2:1	The file is not specified.
	failed to apply settings: Please specify	Measures:
	a filename.	Specify the file.
2	Pop up:	Cause:
	SOAP execution error.	An error occurred when SOAP was
	Please resubmit again later.	executed.
	Console:	Measures:
	ERROR CentroidFold_AIST Execute	Execute it again later.
	failed: Error occurred.	

3-6 Alert messages (examples)

4 Usage of RNA Structural Prediction


The user can download combination types of RNA workflow packages (AIST-knime packages) from the TOGO web site: (<u>http://togo.medals.jp/active local rna prediction.eng.html</u>). After installation, workflows that predict RNA structures, RNA-RNA interactions and protein-RNA complexes can be used.


4 RNA Tertiary Structure prediction workflow

4.1 Preparation

Prepare RNA sequences in FASTA format for RNA and RNA-RNA interactions.

Prepare an RNA sequence in FASTA format and a protein PDB file for the protein-RNA interaction.

4.2 Node

There are various nodes in the RNA Structure Prediction Active Workflow. The nodes are shown below and should be configured accordingly.

4.2.1 Node list

% $\,$ In the following list, "Y" indicates a node where the setting is necessary.

No	Node name	Icon	set	explanation
1	SetVariable	SetVariable	Y	Output port by
		0 <u>12</u>		specifying integer 0,
				1, or 2 in this node's
		Node 75		Configure dialog.
2	Case Switch Variable	CASE Switch		The flow variables
		Variable (Start)		from the input port
		≠v		are moved to exactly
		Node 76		one active output
				branch.
3	FastaFileReader	FastaFileReader	Y	The FASTA format
		<u>Ľ</u> .		file is read.
		Node 1		
4	LSDBCrossSearch	LSDBCrossSearch	-	LSDB cross-search is
		► <mark>1508</mark>		executed.
		Node 24		
5	Sparql_AIST	Sparql_AIST	Y	SPARQL searches for
		1		endpoint
		0.0		(microfRNAdb)
		Node 85		
6	SequenceSelector	SequenceSelector		Selection of sequence
		▶■▶		executed
		Node 61		

4.2.1-1 RNA_Structure_Prediction Active workflow node list

10

~	Control IE-11 AICT		v	Que tracid Fall is
7	CentroidFold_AIST	CentroidFold_AIST	Y	CentroidFold is
		▶ <mark> </mark>		executed.
		Node 15		
8	IPknot_AIST	IPknot_AIST	Y	IPknot is executed.
		N DE N		
		Node 26		
9	RNA2DChecker_AIST		Y	RNA2DChecker is
5		RNA2DChecker_AIST	1	executed.
		► <mark>C</mark> ×		executed.
		Node 16		
10	RactIP_AIST	RactIP_AIST	Y	RactIP is executed.
		<mark></mark> ≻		
		Node 37		
11	RASSIE_AIST		Y	RASSIE is executed.
		RASSIE_AIST		
		Node 18		
12	Rascal_AIST	Rascal_AIST	Y	Rascal is executed.
12	hastal_AIST		1	Rascal is executed.
		► <mark>××</mark> ►		
		Node 91		
		Node 81	_	
13	fpocket2_AIST		Y	Execute fpocket2.
14	PocketSelector	PocketSelector		Select a pocket from
		▶ 🔳 ▶		the fpocket2 results.
		Node 78		
		Node / 8		

15	FragmentSelector	FragmentSelector	Y	Generate a PDB
10	rragmentSelector	· · · · · · · · · · · · · · · · · · ·	I	
		× [™]		ATOM file that
				consists of the RNA
		Node 79		fragment selected by
				the user.
16	AutoDockVina_AIST	AutoDockVina_AIST	Y	Execute AutoDock
		Node 81		Vina.
17	MergeTargetAndLigan	MergeTargetAndLigand		Merge receptor
	d			(protein) and ligand
				(RNA) file.
		Node 84		
18	DockingAnalyzer_AIST	DockingAnalyzer_AIST	Y	Execute cluster
10	Dooming mary zor_rine r		-	analysis (k-means)
		P <mark>_I</mark> ≧_P		and principal
				component analysis
		Node 82		(PCA)
19	Rebuild_AIST	Rebuild_AIST	Y	Rebuild an RNA
10	Nebulia_AIST	= 0	1	ligand using a
				complete RNA
		Node 83		structure.
20	MinMMCandidateSelec	MinMMCandidateSelector		Selection of one
	tor	▶		model for energy
				minimization.
		Node 91		
21	MinMM_AIST	MinMM_AIST	Y	Energy minimization
		► 🗛 ►		by using molecular
				mechanics.
		Node 91		
22	AISTViewer	AISTViewer		The prediction result
				is displayed.
		Node 22		

23	HtmlView	HtmlView	The prediction result is displayed.
24	JmolForModeller	JmolForModeller	The tertiary structure of the RNA or protein is displayed by using Jmol.

or

4.2.2.1 SetVariable

A SetVariable node sets an active flow variable output port by specifying an integer 0, 1, or 2 in this node's Configure dialog. Please specify "an active flow variable output port" in the "Configure" display of the SetVariable node. An active port number of 0 and 1 (2 is unavailable) corresponds to FastaFileReader and Sparql_AIST nodes, respectively.

1) Select the SetVariable icon followed by right-clicking.

4.2.2.1-1 SetVariable icon

2) Select "Configure" from the display menu.

File
Options Flow Variables Memory Policy Specify an active flow variable output port (0:first; 1:second; 2:third) Active flow variable ouput port number (integer: 0 to 2): 0 ÷
OK Apply Cancel 🕖

Select the Active port number 0 for FastaFileReader

File
Options Flow Variables Memory Policy
Specify an active flow variable output port (0:first; 1:second; 2:third)
Active flow variable ouput port number (integer: 0 to 2): $1 + \frac{1}{2}$
OK Apply Cancel

Select the Active port number 1 for Sparql_AIST.

4.2.2.2 Case Switch Variable

This node takes the flow variable 0 or 1 from SetVariable. The parameter is controlled by the previous node.

4.2.2.3 FastaFileReader

An RNA sequence in FASTA format needs to be specified.

1) Select the FastaFileReader icon followed by right-clicking.

4.2.2.3-1 FastaFileReader icon

- 2) Select "Configure" from the display menu.
- 3) Select a file using "Browse" in the pop-up dialog.

🛓 Dialog - 0:1 - FastaFileReader	x
File	
Options Memory Policy	
Fasta File	
Selected File:	
▼ Browse	
OK - Execute Apply Cancel	

4.2.2.3-2 FastaFileReader: Configure

Press "OK" after selecting a file.

CentroidFold predicts the secondary structure of RNA using generalized centroid estimators.

Set an output directory and options.

1) Select the CentroidFold_AIST icon followed by right-clicking.

4.2.2.4-1 CentroidFold_AIST icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

	● Fasta ○ ClustalW
Output Selected Direct	21%
C:¥	V Browse
Advanced	
Other options	

4.2.2.4-2 CentroidFold_AIST: Configure

16

• Output \rightarrow Select Directory \rightarrow Browse:

Select output directory for the calculated results.

- Options tab → Weight of base pairs → Gamma:
 Change the parameter from the pull-down menu if necessary.
 The default value is "2^2".
- Options tab \rightarrow Advanced \rightarrow Other options Enter options if necessary.
- Press "OK" when you have finished entering the required information in the dialog fields.

Please refer to the following website for details about CentroidFold. http://rtools.cbrc.jp/

4.2.2.5 IPknot_AIST

IPknot predicts RNA secondary structures, including a wide range of pseudoknots.

Set an output directory.

1) Select the IPknot_AIST icon followed by right-clicking.

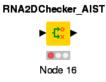
4.2.2.5-1 IPknot_AIST Icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

le	Dialog - 0:12 - IPknot_AIST (Node 26)	_ 🗆 💌
Options	Flow Variables Memory Policy	
Select	Dutput Directory	
Selec	ted Directory	
C:¥	~	Browse
Advanc Options		
	OK Apply Cancel	

4.2.2.5-2 IPknot_AIST: Configure

Press "OK" after completion.


The reference website for details about IPknot is http://rtips.dna.bio.keio.ac.jp/ipknot/

4.2.2.6 RNA2Dchecker_AIST

This node checks whether the RNA 2D structure is suitable for computing tertiary structures by RASSIE and RASCAL. This makes a branch point to perform the prediction efficiently by checking the complexity of the 2D structure. Queries with simple 2D structures will be sent to RASSIE, whereas other queries with complex 2D structures will be sent to Rascal. Queries without any meaningful 2D structure will be aborted.

18

1) Select the IPknot_AIST icon followed by right-clicking.

4.2.2.6-1 RNA2Dchecker_AIST icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

nput type	1 1
	Format Fasta ClustalW
Dutput	
	Selected Directory:
	/tmp Trowse
Veiaht of	base pairs
rengine of	Gamma: 2/2
Advanced Ither opti	
cher oper	

4.2.2.7 RASSIE_AIST

RASSIE performs rapid predictions of simple structures using fragment structures derived from 2D structures.

Set an output directory.

1) Select the RASSIE_AIST icon followed by right-clicking.

4.2.2.7-1 RASSIE_AIST icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

Options	
	Dutput Directory ted Directory
C:¥	V Browse
Options -a 100) -ins 100 -clst -outclst 10 -ins chain
) -ins 100 -clst -outclst 10 -ins_chain
) -ins 100 -clst -outclst 10 -ins_chain

4.2.2.7-2 RASSIE_AIST: Configure

Press "OK" after selecting.

Reference: Yamasaki, S., Nakamura, S. and Fukui, K. (2012) Prospects for Tertiary Structure Prediction of RNA Based on Secondary Structure Information, *J Chem Inf Model*, **52**, 557–567.

4.2.2.8 Rascal_AIST

In Rascal, single strand fragments that are three nucleotides in length are used to solve complicated structures. This method also predicts tertiary structures of RNA–RNA complexes using secondary structure information and a fragment assembly algorithm. Set an output directory.

1) Select the Rascal_AIST icon followed by right-clicking.

4.2.2.8-1 Rascal_AIST icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

Jutput	
	Selected Directory:
	/tmp Browse
_ L	
dvanced	
Specif	options
nm File I	Iploader
pm rnc (
pin riic (Selected File:
,pin the s	
,pin rine (Selected File:

4.2.2.8-2 Rascal_AIST: Configure

Press "OK" after selecting.

Reference: Yamasaki, S., *et al.* (2014) Tertiary Structure Prediction of RNA-RNA Complexes Using a Secondary Structure and Fragment-Based Method, *J Chem Inf Model*, **54**, 672–682.

4.2.2.9 RactIP_AIST

RactIP provides services for predicting RNA joint secondary structures under general types of interactions, including kissing hairpins.

Set an output directory.

1) Select the RactIP_AIST icon followed by right-clicking.

4.2.2.9-1 RactIP_AIST icon

- 2) Select "Configure" from the display menu.
- 3) Select a directory using "Browse" in the pop-up dialog.

)ptions Select (Flow Variables Memory Policy
	ted Directory.
C:¥	V Browse
)ptions	

4.2.2.9-2 RactIP_AIST: Configure

Press "OK" after selecting.

The reference site for details about RactIP is http://rtips.dna.bio.keio.ac.jp/ractip/

4.2.2.10 fpocket2_AIST

This node executes fpocket2, which is a protein pocket (cavity) detection algorithm based on Voronoi tessellation.

Set an output directory and options.

- 1) Right-click on the fpocket2_AIST node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

👃 Dialog - 0:77 - fpocket2_AIST 🛛 🗖 🔜	
File	
Options Flow Variables Memory Policy Select Output Directory C:/ Browse	
- Advanced option Options	
OK Apply Cancel 🕐	

4.2.2.10-1 fpocket2_AIST: Configure

Options → Select Output Directory → Selected Directory:
Specify an output directory path in the text field or "Browse".
Options → Advanced option → Options:
Specify execution options in the text field.

Click the "OK" button after setting the conditions.

Reference: Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories, *Bioinformatics*, **27**, 3276–3285.

4.2.2.11 PocketSelector

PocketSelector launches a viewer to select a pocket site. The user can select only one pocket or interaction site on the viewer.

1) Select one of the coordinates.

Select a row, then click SUB	MIT button.		Submit	Cancel
Pocket		X-coordinate	Y-coordinate	Z-coordinate
500	-1.990		6.063	14.520
501	4.467		-9.310	11.795
502	-1.815		5.809	6.411
503	0.930		-20.067	4.740

4.2.2.11-1 PocketSelector: Submission

2) Select "OK" to submit.

🛃 Confi	irm	X			
i	i Selected rows will be set to an out-port. OK?				
	ОК	Cancel			

4.2.2.12 FragmentSelector

This program selects fragments of RNA in a PDB formatted file.

Set start and end residue (base) numbers for generating a fragment RNA ATOM file.

- 1) Right-click on the FragmentSelector node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

	Dialog - 0:79 - FragmentSelector	x			
File	2				
	Options Flow Variables Memory Policy				
F	Fragment region (start residue (base) number' < 'end residue (base) number')				
	start residue (base) number: 0 +				
	end residue (base) number:				
	OK Apply Cancel 🕐				

4.2.2.12-1 FragmentSelector: Configure

• Options \rightarrow Fragment region \rightarrow start residue (base) number: Specify a start residue (base) number.

• Options \rightarrow Fragment region \rightarrow end residue (base) number: Specify an end residue (base) number.

Click the "OK" button after setting the conditions.

4.2.2.13 AutoDockVina_AIST

Set XYZ coordinates and an output directory path.

- 1) Right-click on the AutoDockVina_AIST node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

🔥 Dialog - 0:81 - AutoDockVina_AIST 🛛 – 🗖 🗙				
File				
Options Flow Variables Memory Policy				
Docking types				
Use binding site coordinates selected by the PocketSelector node				
O Specify binding site coordinates in the input boxes below				
x-coordinate 12.0 y-coordinate 11.0 z-coordinate 13.5				
Docking Box Size				
Use docking box sizes calculated by eBoxSize program				
O Specify docking box sizes in the input boxes below				
box size x 21.0 box size y 24.5 box size z 25.8				
Output				
Selected Directory				
C.¥ Browse				
OK Apply Cancel (

4.2.2.13-1 AutoDockVina_AIST: Configure

• Options \rightarrow Docking Types:

There are three radial buttons: 1) Blind Docking, 2) Use binding site coordinates selected by the PocketSelector node and 3) Specify binding site coordinates in the input boxes below. The default setting is 2).

• Options \rightarrow Docking Box Size:

There are two radial buttons: 1) Use docking box sizes calculated by the eBoxSize program and 2) Specify docking box sizes in the input boxes below. The default setting is 1).

• Options \rightarrow Output \rightarrow Selected Directory:

Specify an output directory path in the textbox or "Browse".

Click the "OK" button after setting the conditions.

Reference: Trott O, Olson AJ (2010) Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, *J Comput Chem*, **31**, 455–461.

4.2.2.14 DockingAnalyzer_AIST

This program analyzes ligand-receptor docking structures using PCA and k-means clustering methods.

Set an output directory path.

- 1) Right-click on the node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

itput Selected	Directory:
/tmp	▼ Browse
umber o	f clusters
inder o	clusters (min:1, max: 4) : 4

4.2.2.14-1 DockingAnalyzer_AIST: Configure

• Options \rightarrow Output \rightarrow Selected Directory:

Specify an output directory path in the textbox or "Browse".

3) Set the number of clusters for k-means.

Click the "OK" button after setting the conditions.

4.2.2.15 Rebuild_AIST

This program rebuilds ligand (RNA) structure models using their fragments and an original structure

Set an output directory path.

- 1) Right-click on the node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

Options Flow Variables Output Selected Directory:	Memory Policy
/tmp	Browse
ОК Арріу	Cancel

4.2.2.15-1 Rebuild_AIST: Configure

• Options \rightarrow Output \rightarrow Selected Directory:

Specify an output directory path in the textbox or "Browse". Click the "OK" button after setting the conditions.

4.2.2.16 MinMM_AIST

This program performs energy minimizations using molecular mechanics. If the user connects Rebuild to DockingAnalyzer via flow variables ports (red ports), this program does not open the pop-up window because candidates are already selected for each cluster by DockingAnalyzer, and this is followed by MinMM.

Set an output directory path.

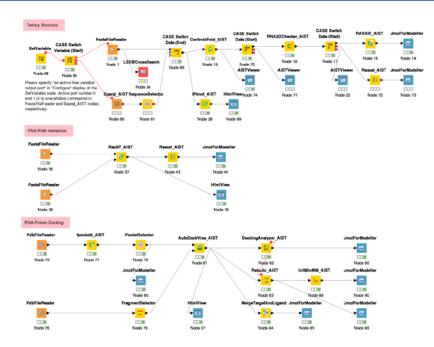
- 1) Right-click on the node and specify "Configure".
- 2) Open the below pop-up window and set execution conditions.

ptions Flow Varia utput	ables Memory	/ Policy	
Selected Directory: - /tmp		•	Browse

4.2.2.16-1 MinMM_AIST: Configure

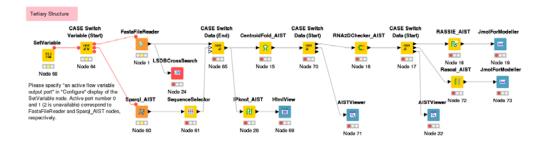
• Options \rightarrow Output \rightarrow Selected Directory:

Specify an output directory path in the textbox or "Browse". Click the "OK" button after setting the conditions.


5 Examples for Execution and Result Viewing

The user can download the combination types of RNA workflow packages (AIST-knime packages) from the ToGo-WF website:

(http://togo.medals.jp/active local rna prediction.eng.html).


After installation, the workflow of RNA Tertiary Structure Prediction, which performs RNA 3D structure and RNA-RNA/protein interaction predictions, can be used. The configuration of all nodes is initially set to default values for typical calculations.

5.1 Prediction of Tertiary Structures

5.1 Prediction of 3D RNA structures

5.1.1 Prediction of Tertiary Structures using the ReadFastaReader node

Copyright (c) Molecular Profiling Research Center for Drug Discovery, AIST 2018 All Rights Reserved

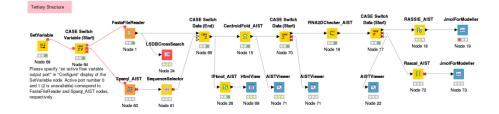
1) SetVariable = 0 for ReadFastReader.

File
Options Flow Variables Memory Policy Specify an active flow variable output port (0:first; 1:second; 2:third) Active flow variable ouput port number (integer: 0 to 2): 1 Active flow variable ouput port number (integer: 0 to 2): 1 -
OK Apply Cancel

2) Set a FASTA file for ReadFastReader by selecting "Configure". FASTA file example:

>1CQ5 GGCGUUUACCAGGUCAGGUCCGGAAGGAAGCAGCCAAGGCGCC

Example of an RNA sequence:

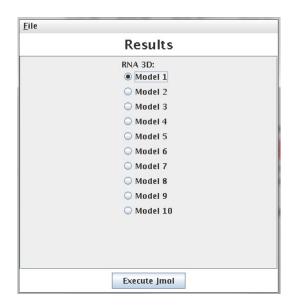

 $http://togo.medals.jp/active_local_rna_prediction.html$

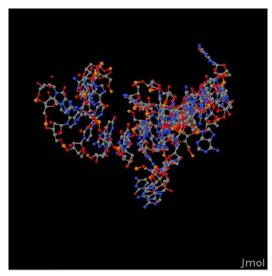
File
Options Flow Variables Memory Policy Fasta File Selected File:
/tmp/RASSIE1cq5.fa
OK Apply Cancel 🖓

3) Click the CASE Switch Data (Start) node.

5.1.1-1 Execute selected and executable nodes (F7)

The workflow can be stopped at the CASE Switch Data (Start) node and the RASSIE_AIST node is automatically selected for this computation by RNA2Dchecker.




In RASSIE, the fragment structures based on 2D structures are used to predict simple structures rapidly. For this example (PDB ID: 1CQ5), it may take 3–5 minutes. In Rascal, single strand fragments that are three nucleotides in length are used to solve complex structures.

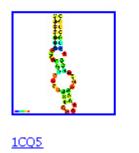
- 4) Execute RASSIE and JmolForModeller nodes.
- 5) <u>JmolForModeller</u>

Results of RASSIE_AIST can be viewed as a 3D structure in JMOL by JmolForModeller.

Please refer to the following website for details about Jmol: http://jmol.sourceforge.net/

5.1.1-2 JmolForModeller –Predicted 3D RNA structure

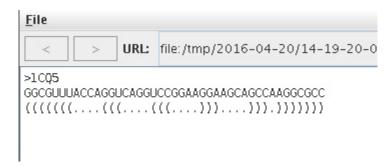
6) <u>AISTViewer</u>


The results of CentroidFold_AIST can be viewed as CentroidFold results by AISTViewer.

A pop-up window appears by clicking the secondary structure predicted in another window.

 File

 URL:
 file:/tmp/2016-04-20/14-18


CentroidFold Results

5.1.1-3 AISTViewer - CentroidFold results

7) <u>HTMLViewer</u>

The results of IPknot_AIST can be viewed by HtmlViewer.

5.1.1-4 HTMLViewer – IPknot results

Reference: Yamasaki, S., Nakamura, S. and Fukui, K. (2012) Prospects for Tertiary Structure Prediction of RNA Based on Secondary Structure Information, *J Chem Inf Model*, **52**, 557–567.

Tertiary Structure CASE Switc Data (Start) CASE S CASE S Rs ene T case 2 <mark>۲</mark> (ase 7 • C) Node 65 Node 15 Node 70 Node 16 Node 17 ode 18 rie 19 Node 64 scal AIST + <u>88</u> + of 1 node Ac ive port num HtmlVi de 72 ISTVI ISTV d 1 (2 is u <mark>⊁ (H</mark>) Node 26 Node 61 ode 7 ode 22

5.1.2 Prediction of Tertiary Structures using the Sparql_AIST node

1) SetVariable = 1 for Sparql_AIST.

File	
Options Flow Variables Memory Policy	
Specify an active flow variable output port (0:first; 1:second; 2:third)	1
Active flow variable ouput port number (integer: 0 to 2): $1 + 1$	
OK Apply Cancel 🕐	

2) Configure for Sparql_AIST.

We provide a sparql endpoint for the KNIME workflow. For the prediction of RNA structures, the endpoint is set to fRNAdb, which is based on http://dbarchive.biosciencedbc.jp/jp/frnadb/desc.html.

Options Advanced	I Flow Variables Memory Policy			
Output Directory				
Select	ed Directory:			
Browse				
SPARQL endpoints				
SEVENS	endpoint: http://tgrdf.medals.jp/openrdf-sesame/repositories/sev			
🖌 fRNAdb	endpoint: http://tgrdf.medals.jp/openrdf-sesame/repositories/sm			
UNIPROT	endpoint: http://tgrdf.medals.jp/openrdf-sesame/repositories/uni			
PDB	endpoint: http://pdb.bio2rdf.org/sparql			
_				
🔲 KEGG - pathwa	y endpoint: http://kegg.bio2rdf.org/sparql			
SPARQL search condi	tions			
Taxo	n (not available for UNIPROT)			
	Keyword			
	Minimum sequence length 60			
	Maximum sequence length 100			
	Resolution (for PDB) 2.8			
Dat	thway (for KEGG-pathway)			
Fa	niway (ibi Kegg-patriway)			
Output format				
	Output format (FASTA' for 'SequenceSelector nod			
	FASTA			

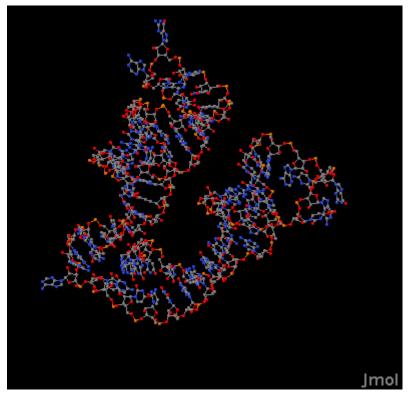
3) SequenceSelector Node.

Select a row and click "Submit" to obtain FASTA data from the fRNAdb endpoint.

Select a row, then click SUBMIT button.	Submit	Cancel		
ID	Description	Sequence		
FR000001	Group II intron	UUGAGCCGUAUGCGAUGAAAGUUGCACGUACGGUUCUUUAAGGG .		
FR000004	transfer RNA (tRNA), CCA (Trp/W) Tryptophan	AGGUCAGUAGUUCCAACGGUAGAACGACAGUCUCCAAAACUGUAU		
FR000006	suhB	GAACUCAGCCCUUUCGGGCGUUUCCUCCCAAUGACUCGGCCGCC.		
R000009	Putative conserved nancoding region (EvoFold)	AUGAACUUGUUGUAGUUCUCAU		
R000011	Piwe-interacting RNA (piRNA)	UCGCCACUUGAUACUCUAUGACAAUGGC		
FR000014	Piwi-interacting RNA (piRNA)	UGUGCAAACCUCGGGGUGGGGU		
R000015	Piwi-interacting RNA (piRNA)	UAGAGGAUUCUAUGGCAGGACCAGAAC		
FR000020	Putative conserved noncoding region (EvoFold)	AUUGCASUUGCUGCUUUGUACAGASGUUACUGCAAU		
FR000022	Piwi-interacting RNA (piRNA)	UACUUGUUCCAACACCAUCUGAUGGUCAAU		
FR000023	Putative conserved noncoding region (EvoFold)	GAAUUUUAUCCAAGGGAUAGGGUUC		
R000024	Piwi-interacting BNA (piBNA)	UGUGGCCUCUGGACGUUACGGGAACU		
R000035	Piwi-interacting RNA (piRNA)	AAAUAUUCCAGUAGGCCUGAGGUCAAG		
R000036	transfer RNA (tRNA), TTG (Gln/Q) Glutamine	UAGGGGGUAGUAUAAUUGGAAGUACUAAAAAUUUUGAAUUUUUAA		
FR000037	HIV gag stem loop 3 (GSL3)	GGCCAGGGGGGAAAGAAACACUAUAUGCUAAAACACCUAGUAUGGG		
FR000038	Putative conserved nancoding region (EvoFold)	GGAGGUUUGCUCGGAAACUUCC		
R000039	transfer RNA (tRNA), CAT (Met/M) Methionine	GGCUGAAUAGUUUAAUUGGUUAAAACAUCGGAUUCAUAAGCCGGG		
FR000042	Piwi-interacting RNA (piRNA)	UCUGGCCUUUGGACAGUUGUGGUGUC		
R000044	Putative conserved noncoding region (EvoFold)	CUUAGCUAUGUGCAUAGUUUAAG		
R000047	Piwi-interacting RNA (piRNA)	GGAUUUCACUGGAAUCGGUCAUAAAAA		
R000048	Putative conserved nancoding region (EvoFold)	CCAAUUAAAUUUGUGUAAUUGG		
R000049	transfer RNA (tRNA), TTG (Gln/Q) Glutamine	UAGGAGAUAGAAUAAUGGAGUUCUAAAGAUUUUGAGUCUUUAUGU		
FR000050	Putative conserved noncoding region (EvoFold)	AUUUUUUGAACCAAGCAGAAAAAU		
R000053	Piwi-interacting RNA (piRNA)	UGGGAUGUUUGAUUUUAGCUUCCUCUCCGU		
R000054	Putative conserved noncoding region (EvoFold)	UUAUUUAAUAUGUAAAUUGUAUUGCUAUACAUAAAAUAA		
R000056	Putative conserved noncoding region (EvoFold)	AGAUGGAUGAGUUGGAUCCAUCU		
R000059	small nucleolar RNA (snoRNA) 2186	GGCCGGUGAUGACAAGACCAUUGUCAUACUAGAUAUUGAUCAUAU		
R000060	Piwi-interacting BNA (piBNA)	UGUUGAAAAUGUGCCUCCUGGAGACAGC		
FR000061	transfer RNA (tRNA), TTC (Glu/E) Glutamic acid	GGCUCCUUGGUCAAGCGGUUAAGACACOGCCCUUUCACGGCGGU.		
IRABARAS.	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ALCHINE AND ALCHING ALCHI		

For this example, FR000004 is selected for further calculations. The structure prediction is difficult for this example and takes time. The computation required for this example may be considered to be close to our system limit.

4) Click the CASE Switch Data (Start) node.

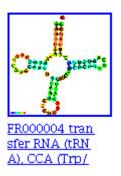

5.1.2-1 Execute selected and executable nodes (F7)

The workflow can be stopped at the CASE Switch Data (Start) node and the Rascal_AIST node is automatically selected for this computation by RNA2Dchecker. In RASSIE, the fragment structures derived from 2D structures are used to predict simple structures rapidly. In Rascal, single strand fragments that are three nucleotides in length are used to solve complex structures. There are essentially no experimental tertiary structure examples available for structures with long chain loop structures and single-strands. Thus, in principle, RASSIE cannot predict these tertiary structures. For such targets, tertiary structure prediction is performed by Rascal. For this example (FR000004), <u>it may take about two hours</u>. During execution, check the status of the node ("in progress") and do not close KNIME before the status reads "Complete".

- 5) Execute RASSIE and JmolForModeller nodes.
- 6) <u>JmolForModeller</u>

Results of RASSIE_AIST can be viewed as a 3D structure in JMOL by using JmolForModeller.

File	
	Results
	Rascal: Model 1
	O Model 2
	🔾 Model 3
	Execute Jmol

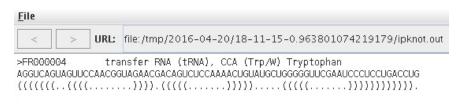


5.1.2-2 JmolForModeller –Predicted 3D RNA structure

7) <u>AISTViewer</u>

The results of CentroidFold_AIST can be viewed as CentroidFold results by AISTViewer.

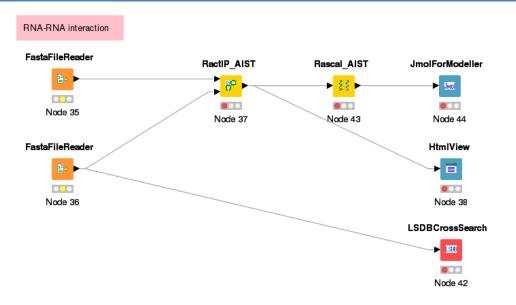
A pop-up window appears by clicking on the secondary structure predicted.


CentroidFold Results

5.1.2-3 AISTViewer - CentroidFold results

8) HtmlView

The results of IPknot_AIST can be viewed by HtmlViewer.


The results of Raccess_AIST can be viewed as text by HtmlView.

5.1.2-3 HtmlViewer – CentroidFold results

Reference: Yamasaki, S., *et al.* (2014) Tertiary Structure Prediction of RNA-RNA Complexes Using a Secondary Structure and Fragment-Based Method, *J Chem Inf Model*, **54**, 672–682.

5.2 Prediction of RNA-RNA interactions

5.2 Prediction of RNA-RNA interactions

1) Set a FASTA file for each ReadFastReader by selecting "Configure".

FASTA file example: >1XP7:A | PDBID | CHAIN | SEQUENCE

CUUGCUGAAGUGCACACAGCAAG

File
Options Flow Variables Memory Policy Fasta File Selected File: /tmp/1xp7_afasta Browse
OK Apply Cancel 🕐

2) Set a FASTA file for ReadFastReader by selecting "Configure".

FASTA file example: >1XP7:B|PDBID|CHAIN|SEQUENCE CUUGCUGAAGUGCACACAGCAAG

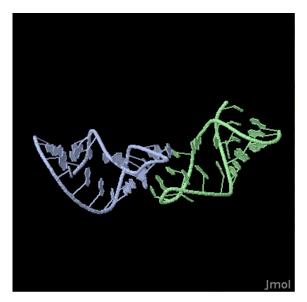
Example of an RNA sequence:

 $http://togo.medals.jp/active_local_rna_prediction.html$

File
Options Flow Variables Memory Policy
Fasta File
Selected File:
/tmp/1xp7_b.fasta 💌 Browse
OK Apply Cancel 🕐

3) Click the RactIP_AIST node.

0


5.2-1 Execute selected and executable nodes (F7)

- 4) Execute Rascal and JmolForModeller nodes.
- 5) <u>JmolForModeller</u>

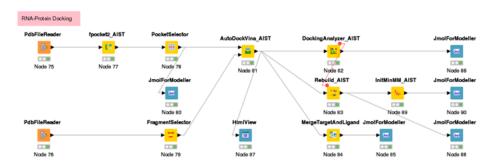
Results of RASSIE_AIST can be viewed as a 3D structure in JMOL by JmolForModeller.

Please refer to the following website for details about Jmol: http://jmol.sourceforge.net/

Results	
Rascal: Model 1	
O Model 2	
Model 3	

5.2-2 JmolForModeller – Predicted 3D RNA structure

6) <u>HTMLViewer</u>


The results of IPknot_AIST can be viewed by HtmlViewer.

< > URL: file:/tmp/2016-04-20/21-32-54-0.20	136396	3826925
GLPK Simplex Optimizer, v4.51		
198 rows, 32 columns, 271 non-zeros		
* 0: obj = 0.000000000e+00 infeas = 0.000e+00		
* 26: obj = 1.075252366e+01 infeas = 0.000e+00	(0)	
OPTIMAL SOLUTION FOUND		
GLPK Integer Optimizer, v4.51		
198 rows, 32 columns, 271 non-zeros		
32 integer variables, all of which are binary		
Integer optimization begins		
+ 26: >>>> 1.075252366e+01 <= 1.075252366e+01		(1; 0)
⊦ 26: mip = 1.075252366e+01 <= tree is empty	0.0%	(0; 1)
INTEGER OPTIMAL SOLUTION FOUND		
>1XP7:A PDBID CHAIN SEQUENCE		
CUUGCUGAAGUGCACACAGCAAG		
(((((((,,,[[[[,]))]))))))))))))		
>3agv		
GGAGGUGCUCCGAAAGGAACUCCA		
.((.]]]]((()))))		

5.2-2 HtmlViewer – IPknot results

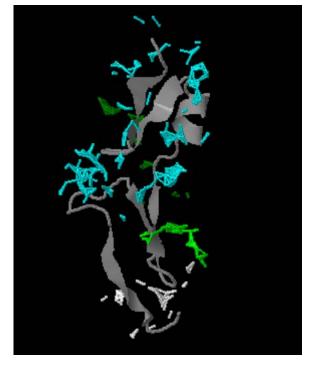
Reference: Yamasaki, S., *et al.* (2014) Tertiary Structure Prediction of RNA-RNA Complexes Using a Secondary Structure and Fragment-Based Method, *J Chem Inf Model*, **54**, 672–682.

5.3 Prediction of Protein-RNA interactions

1) Set a PDB file for PdbFileReader by selecting "Configure".

Select a protein PDB file.

PdbFileReader	fpocket2_AIST	PocketSelector
Node 75	Node 77	Node 78
🛆 Dialog - 0:75 - Pdb	FileReader	
File		
Options Flow	Variables Memory Policy	
Selected File:		
/tmp/protein.	pdb	▼ Browse


2) Search for interaction sites of the uploaded PDB file using Fpocket2_AIST.

fpocket2 results	
Model: 1	

Pocket	X-coordinate	Y-coordinate	Z-coordinate
SOO	-1.990	6.063	14.520
SO1	4.467	-9.310	11.795
\$02	-1.815	5.809	6.411
SO 3	0.930	-20.067	4.740

Execute Jmol after the fpoeck2 calculation is finished.

The colors of the coordinates correspond to the positions in the PDB.

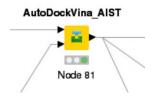
5.3 JmolForModeller – Fpocket2

3) Select one of docking/interacting positions.

Select a row, then click SU		Submit		Cancel	
Pocket	X-coor	dinate	Y-coordinat	te Z-coordinat	
S00	-1.990		6.063	14.520	
S01	4.467		-9.310	11.795	
S02	-1.815		5.809	6.411	
S03	0.930		-20.067	4.740	

🛃 Conf	irm	×	
i	i Selected rows will be set to an out-port. OK		
	ОК	Cancel	

Click "OK" to submit the selected position for AutoDockVina.


4) Select an RNA PDB file.

DB File Selected	File:		
/tmp/r	na.pdb	 •	Browse

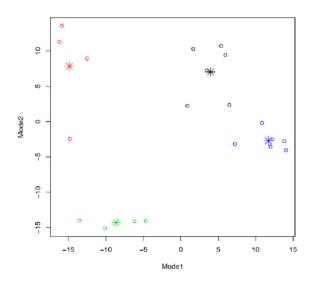
5) Set the fragment of RNA for docking calculations.

Options Flow Variables Memory Policy
Fragment region (start residue (base) number' < 'end residue (bas
start residue (base) number: 11 🗧
end residue (base) number: 13
OK Apply Cancel 🕐

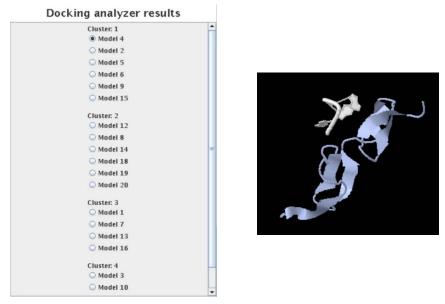
6) Run docking calculations for both the protein and RNA fragment.

7) Merge the docking results for the RNA fragment and protein.

AutoDock-VINA results
Model 1
🔾 Model 2
🔾 Model 3
🔾 Model 4
🔾 Model 5
🔾 Model 6
🔾 Model 7
Model 8
🔾 Model 9
Model 10
🔾 Model 11
O Model 12
🔾 Model 13
🔾 Model 14
🔾 Model 15
🔾 Model 16
Model 17
Model 18
Model 19
O Model 20
Execute Jmol

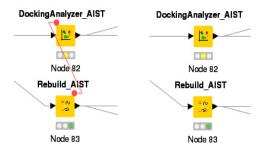

Twenty docking poses for the RNA fragment-protein complex.

Select one of the 20 poses and execute Jmol to view the structure.

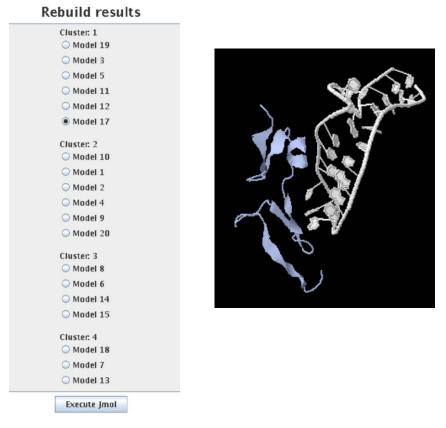


5.3 AutoDock Vina – Docking structure of RNA fragment and protein

Analyze the docking outputs by clustering the results.
 The results can be viewed by using HtmlViewer and JmolForModeller.



5.3 Analyzer - PCA analysis and clustering of structures of the RNA fragment and protein



5.3 Analyzer – Tertiary clustering structures of the RNA fragment and protein

When you link the nodes between "DockingAnalyzer" and "Rebuild" (red line), the results of the docking analysis by "DockingAnalyzer" is passed to the "Rebuild" node. Analysis of the structures using your own approach can be achieved by deleting the red line. Thus, all docked results are simply rebuilt without clustering the structures.

9) Rebuild the RNA structure based on the fragment poses.



5.3-5 Rebuild –Rebuilt structures of the RNA-protein complex

10) Minimize the structure.

Minimization takes time and is dependent on the size of the structure of the complex.

During execution, check the status of the node ("in progress") and do not close KNIME before the status reads "Complete".

5.3 MinMM – Energy minimized structures of RNA and protein

6 SPARQL node

SPARQL nodes execute SPARQL against endpoints and there are two nodes.

6.1 Sparql related node

6.1.1 Node list

There are two SPARQL nodes and two relative nodes as follows:

No	Name	Icon	Set	Explanation
1	Sparql_AIST	Sparql_AIST	Y	Execute
				SPARQL simply
		BJ		against
				endpoints AIST
				released.

6.1.1-1 SPARQL node list

2	Sparql_Adv	Sparql_AIST_Adv	Y	Execute
		53 -		SPARQL simply against
3	SequenceSelector	SequenceSelector		endpoints. Display SPARQL
0	Sequences elector			results and
				select a sequence.
4	HtmlView			Display SPARQL
				results.

6.1.2 Sparql_AIST

6.1.2.1 Setting the execution environment

1) Select the Sparql (Simple) icon and right-click.

Sparql_AIST

6.1.2.1-1 Sparql (Simple) icon

- 2) Select "Configure" from the menu.
- 3) Setup execution conditions.

🛓 Dialog - 0:114 - Sparql (Simple)
File
Options Advanced Flow Variables Memory Policy Output Directory
Selected Directory.
C:¥
SPARUL endpoints
SEVENS endpoint http://terdf.cbrc.jp/openrdf-sesame/repositories/sev
fRNAdb endpoint: http://lod.dbcls.jp/openrdf-sesame/repositories/frna
UNIPROT endpoint http://lod.dbcls.jp/openrdf-sesame/repositories/unip
PDB endpoint: http://pdb.bio2rdf.org/sparql
KEGG - pathway endpoint: http://pdb.bio2rdf.org/sparql
SPARQL search conditions
Taxon (not available for UNIPROT)
Keyword
Minimum sequence length 300
Maximum sequence length 600
Resolution (for PDB) 2.8
Pathway (for KEGG-pathway) small
Output format
Output format ('FASTA' for 'SequenceSelector node')
FASTA
OK Apply Cancel

6.1.2.1-2 Sparql (Simple): Configure

• Options tab \rightarrow Output Directory:

Red frame: specify an absolute path of a directory to store a SPARQL result file.

• Options tab \rightarrow SPARQL Endpoint:

Blue frame: select a SPARQL endpoint. The user can select endpoints as follows: SEVENS (GPCR database: http://sevens.cbrc.jp/) fRNAdb (functional RNA database: https://dbarchive.biosciencedbc.jp/jp/frnadb/desc.html) UNIPROT (only human data, http://www.expasy.org/) PDB (100% non-redundant, x-ray, protein data, http://www.rcsb.org/) KEGG pathway (pathway: http://www.genome.jp/kegg/pathway.html

• Options tab \rightarrow SPARQL search conditions:

Green frame: specify SPARQL search conditions as follows:

- 1) Taxon (except for UNIPROT and the KEGG pathway)
- 2) Keyword (except for the KEGG pathway)
- 3) Sequence length (max, min) (except for the KEGG pathway
- 4) Resolution (PDB only)
- 5) Pathway (only the KEGG pathway)

• Options tab \rightarrow Output format:

Orange frame: select either "FASTA" or "Tab-limited".

FASTA – generates a result file as FASTA format.

Tab-limited – generates a result file as Tab-limited format.

Please select "FASTA" if you are going to use SequenceSelector.

• Options tab \rightarrow Advanced:

Green frame: specify SPARQL query. If you specify, the above search conditions are neglected.

Then, click the "OK" button.

6.1.3 Sparql_AIST_Adv.

6.1.3.1 Setting the execution environment

1) Select the Sparql (Simple) icon and right-click.

6.1.3.1-1 Sparql_AIST_Adv. icon

2) Select "Configure" from the menu.

Options Flow Variables	Memory Policy
Output Directory	elected Directory:
	tmp Browse
-SPARQL endpoint	ndpoint: http://tgrdf.medals.jp/openrdf-sesame/repositories/sm
SPARQL Input SPARQL Query	
SELECT * WHERE {	
	OK Apply Cancel 🕡

• SPARQL endpoint

Specify endpoint.

Examples:

http://tgrdf.medals.jp/openrdf-sesame/repositories/sevens

http://tgrdf.medals.jp/openrdf-sesame/repositories/smallRNAdb

http://tgrdf.medals.jp/openrdf-sesame/repositories/uniprot-reviewed-hum and

http://pdb.bio2rdf.org/sparql

http://kegg.bio2rdf.org/sparql

Input SPARQL query

Specify SPARQL query. Then, click the "OK" button.

6.1.4 SequenceSelector

6.1.4.1 Result

By right-clicking the SequenceSelector node and selecting "Execute" from the menu, the SequenceSelector node is executed and SPARQL results are displayed. This node is available for Sparql (AIST) and Sparql(Simple) nodes if user selects "FASTA" in the search condition at the nodes.

SequenceSelector

6.1.4.1-1 SequenceSelector icon

select a row, then click SUBMIT button.	Submit	Cancel
ID	Description	Sequence
CBRC-HSAP-02-0037	Adrenergic receptors	MDHQDPYSVQATAAIAAAITFLILFTIFGNALVILAVLTSRSLF
BRC-HSAP-04-0004	Adrenergic receptors	MASPALAAALAVAAAAGPNASGAGERGSGGVANASGASW
BRC-HSAP-05-0044	Adrenergic receptors	MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMG
BRC-HSAP-05-0047	Adrenergic receptors	MNPDLDTGHNTSAPAHWGELKNANFTGPNQTSSNSTL
BRC-HSAP-08-0018	Adrenergic receptors	MVFLSGNASDSSNCTQPPAPVNISKAILLGVILGGLILFGV
BRC-HSAP-10-0036	Adrenergic receptors	MGSLQPDAGNASWNGTEAPGGGARATPYSLQVTLTLVC
BRC-HSAP-10-0037	Adrenergic receptors	MGAGVLVLGASEPGNLSSAAPLPDGAATAARLLVPASPP
BRC-HSAP-20-0001	Adrenergic receptors	MTFRDLLSVSFEGPRPDSSAGGSSAGGGGGSAGGAAP

6.1.4.1-2 SequenceSelector results

The user can select sequence information, and if the "Submit" button is selected (i.e., clicked) the absolute path of a results file stored by sequence information is setup and sent to the out-port of the SequenceSelector node. By connecting the out-port to the in-port of the sequence analysis nodes, the user can execute sequences obtained in the SPARQL results.

6.1.5 HtmlView

6.1.5.1 Result

The HtmlView node is executed by right-clicking the HtmlView node and selecting "Execute" from the menu. This node is available for Sparql (AIST) and Sparql (Simple) and can display results.

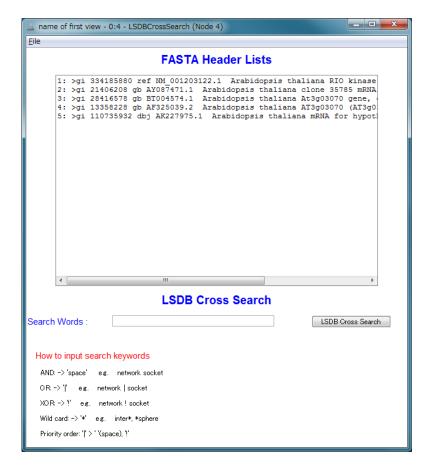
6.1.5.1-1 HtmlView icon

A Html View - 0:121 - HtmlView (Node 6)
Eile
URL: file:C:/2013-06-26/18-34-54-0.8906006612134388/sparqlRes.fa
<pre>>CERC-HSAP-02-0037 Adrenergic receptors MHODPYSOATAAIAAAITELIAFIIFONALVILAVIJSKSIAAPONLFLVSLAAADILVAILIIPFSLANELLGYWYFRRTWCEVYLALDVLFCT GSFFAPCLIMILVYLRIYLIAKRSNRRGFRAKGGPQQESKQPRPDHGGALASAKLPALASVASAREVWGHSKSTGEKEEGETPEDIGTRALPPSNA RAQLTREKRFTFVLAVVUGVUCWFFFFFSYSLGICLCEKHCKVPHELOFFFWIGYCNSSLNPVIYTIFNQFRAFRRILCPWTQTAWEMKGFA CGRC-HSAP-04-0004 Adrenergic receptors MASPALAAALAVAAAAGNAAGAGERGSGGVANASGASWGPPSGVSAGAVAGLAAVVGFLIVFTVVGNVLVIAVLTSRALRAPONLFLVSLASAD SAVISFPIVSLYNQPDGAATPQCGINDETWYLLSSCIGSFFAPCLIMGLVYARIYKVAKLRTHTLSEKRAFVQPDGASPTIENGLGAAAGAGENCH LSRRRARSSVCRKVAQAREKRTFVLAVVMGVGVGVGMGIVMSLUVLATVGRVLVITAILAKRERLQTVTHYPITSLACADLVMGLAVVPFGAAHILKK QCEAINCYANETCCDFFTNQAYAIASSIVSFYVELVIMVFVSKVFQEAKGLQKIDKSEGRFHVONLSQVEQDGRTGHGLRRSSKFCLKEHKALKTL MGNTGEGSSYNVEQEKENNLCEDLFGTDFVCHQGTVPSDNIDSQGRNCSTNDSLL XCBRC-HSAP-05-0047 Adrenergic receptors MNPDDLOFGNUTSSAPLMWGELKNANFGFGNSSNSTLPGLDITHAISVGLVLGAFILFAIVGNILVILSVACNRHLRFPTNYFIVNIAMADLLLSTT GPLLGMKEPAPNDDKCGVTEEPTALFSSLGSFYTPLAVINVFVVSKVFQEAKGLQKIDKSEGRFHVONLSQVEQDGRTGHGLRRSSKFCLKEHKALKTL MRNTEQGSSYNVEQEKENNLCEDLFGTDFVCHQGTVPSDNIDSQGRNCSTNDSLL CCBRC-HSAP-05-0047 Adrenergic receptors MNFDLDTGHUKGGRRGRRRRRRREGGAYTYRDWTRGSLERSQSRKDSLDDSGSCLSGSORILFSASPSGYLGRGAPPVELCAFPEWKAPGAL 2CBRC-HSAP-08-0018 Adrenergic receptors MVFLISGNASDSSNCTOPPAPVNISKAILLGVLIGGLLIGGVLINIVILSVACHRHLHSVHYIVINLAVADLLISTVLPFSAIFEVLGYWAFGK SCBRC-HSAP-08-0018 Adrenergic receptors MSLQFDAGNASMWGTLAFGGGAARTPYSLQVTILTWVLXVSKSKSLKSLKTLRHKNAPAGGSGRASANTHTHFSVLLKFSBRKKAAKTLG GYTLHPSSOAVEGOKHKMVRTVVSKETTYHISKDCVCEWKFFSSMFRGSARITISKDQSSCTTARVRSKSFLQVCCCVGPSFSLDRNHQVPTIK 2CBRC-HSAP-10-0036 Adrenergic receptors MGSLQFDAGNASMWGTLAFGGGAARTPYSLQVTILIVVLAKKNTRVPESSMERGSARITIFKSVGLVSASGUCCSGFGRERARARTHRFTWSLKKAARTUG GYTLHPSSOAVEGOKHKWKTVVLAVVGFFFFTTYLIAKCSVFFSSMFRGSARITIFKSVFVLCIMASSLLKFSBRKKAARTUG GYTLHPSDAVEGOKNDWRTPSDFRARGAAAPLPSDFARCHNDFYLCUFFFTFWFGYCNSSLSLPVLITINGAASANTHFFSVLAKKAARTUG CCTASILSLCTISVDRYGVRHEKXAEDARCYNDPKCCCFVTNRAVALISSVSFTVPLCIMAFVHYLVIAAPSLLSABDILVATLVIFFSLAFFFF MGSQUVUGASEPGNLSAAPLPDGAATPSD</pre>
•

6.1.5.1-2 HtmlView results

7 Appendix

7.1 Appendix A : LSDBCrossSearch


A Life Science Database cross-search can be executed in the green node status after executing the LSDBCrossSearch node.

LSDBCrossSearch

The Life Science Database cross-search site was developed as part of the Database Integration project, which was promoted by the Ministry of Education, Culture, Sports, Science and Technology.

If "View" is selected in the right-click-menu of the LSDBCrossSearch node, the View window of the LSDBCrossSearch node will appear.

7.1-1 LSDBCrossSearch View window

Headers of the FASTA file used for the LSDBCrossSearch node are shown in FASTA Header Lists.

A keyword(s) for cross-search should be entered in the text box.

For a combined search, the following symbols should be used:

·AND retrieval: Space " "

•OR retrieval: Pipe "| "

·Exclusive-OR retrieval: Exclamation mark ""

•Wildcard search: Asterisk "* "

OR has the highest priority.

Cross-search will be carried out by clicking the LSDB Cross Search button, and a Web browser of the Life Science Database cross-search will appear as shown below.

7.1-2 LSDB window

Please refer to the Life Science Database cross-search site for details. Life Science Database website: <u>http://biosciencedbc.jp/dbsearch/</u>

8 Contact

Please send your queries or comments to the email address below. workflow@molprof.jp

Molecular Profiling Research Center for Drug Discovery of AIST will listen to requests made by users positively and aims to make the system better.

Molecular Profiling Research Center for Drug Discovery (MolProf) Advanced Industrial Science and Technology (AIST) http://togo.medals.jp

AIST Tokyo Waterfront Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan

9 Terms and Conditions of License for Use

RNA Structure Prediction is licensed under a <u>Creative Commons Non-commercial 4.0 International License</u>.

If you want to take advantage of this workflow for commercial purposes, please contact us for details (<u>workflow@molprof.jp</u>).